
~ )  Pergamon 
Int..L Heat Mass Transfer. Vol. 39, No. 14, pp. 2869-2882, 1996 

Copyright © 1996 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0017-9310/96 $15.00+0.00 

0017-9310(95)00378-9 

Numerical study on mode-transition of natural 
convection in differentially heated inclined 

enclosures 
C. Y. S O O N G  and P. Y. T Z E N G  

Department of Aeronautical Engineering, Chung Cheng Institute of Technology, Taoyuan, 
Taiwan 33509, Republic of China 

and 

D. C. C H I A N G  and T. S. S H E U  

Department of System Engineering, Chung Cheng Institute of Technology, Taoyuan, Taiwan 33509, 
Republic of China 

(Received 6 March 1995 and in final form 6 November 1995) 

Abstract--The present paper reports a numerical investigation of natural convection and the associated 
mode-transition and hysteresis phenomena in a two-dimensional differentially heated inclined enclosure. 
Unsteady Navier-Stokes/Boussinesq equations governing the fluid flow and heat transfer are solved 
numerically. Rayleigh numbers in steady flow regime, 1 x 103 ~< Ra ~< 2 x 104, and the angles of inclination 
of 0 ° ~< ~ ~< 90 ° are considered in the computations. Major concerns are the effects of inclination on flow- 
mode transition. Enclosures of length-to-height aspect ratio As = 4, 3 and 1 are studied. Air of Pr = 0.71 
in an enclosure of As = 4 is chosen as the flow model to examine the influences of the inclination at various 
Rayleigh numbers. Hysteresis phenomena for Ra >1 2000 are demonstrated. Parameter maps of R a v s  ~ for 
As = 4 with 7 increasing and decreasing are proposed, in which flow regimes characterized by various 
modes are designated. Effects of initial condition on the flow pattern formation are examined for As = 3. 
In a model of square enclosure (As = 1), effect of the imperfect thermal boundary conditions is examined 
to investigate the possible causes for inconsistency of the predictions with the experiments. The present 
study provides more physical insight into the natural convection in enclosures. Copyright © 1996 Elsevier 

Science Ltd. 

INTRODUCTION 

Thermally driven flow and heat transfer in fluid layers 
and enclosures have attracted considerable attention 
due to their relevance to a variety of  engineering appli- 
cations such as solar energy collectors, crystal growth 
reactors, multilayered walls and double windows, etc. 
On the other hand, this class of  flows can be employed 
as a theoretical model  for investigation of  some fun- 
damental  hydrodynamic natures such as thermal 
instability, bifurcation and chaotic behaviors of  the 
nonlinear flow systems. These issues are significant 
and closely related to the exploration of  transition to 
turbulence. In inclined enclosures, orientation of  the 
flow system changes the buoyancy force components  
and the resultant flow structure. The issues mentioned 
above have been discussed in the review article by 
Yang [1]. In the past decades, t remendous amount  
of  papers on this field have appeared. Instead of  an 
exhaustive literature survey, only those closely related 
to the present study, i.e. two-dimensional steady-flow 
regime, are addressed herein. A detailed review of  
natural convection in enclosures can be found else- 
where. 

Probably, the experimental work by Dropkin  and 
Somerscales [2] was the first study on inclined enclos- 
ure in a heat transfer viewpoint. The pioneering stab- 
ility analysis with a companion experiment was per- 
formed by Har t  [3]. Through heat transfer 
measurements, Hollands and Konicek [4] confirmed 
a change-over angle, at which it was presumably 
caused by a transition between two different flow pat- 
terns. In a later work, Arnold et  al. [5] also dem- 
onstrated the existence of  this change-over phenom- 
enon. 

Cat ton et al. [6], by using Galerkin method, solved 
two-dimensional flow and temperature fields in 
inclined enclosures of  various aspect ratios. In a more 
recent numerical study [7] with stress on heat transfer 
rates, a penalty function finite element method was 
employed to solve the problem of  natural convection 
in inclined enclosure. In the above-mentioned numeri- 
cal works, however, only limited information about  
flow patterns was provided. 

The studies, either numerical and experimental, by 
Ozoe and his colleagues [8-13] are quite noteworthy. 
In an experiment [8] of  glycerol in a square enclosure 
(in two-dimensional sense), they found a mismatch in 
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NOMENCLATURE 

As aspect ratio, L / H  
g gravitational acceleration [m s 2] 
H height of the side walls [m] 
L length of the heating wall [m] 
Nu mean Nusselt number 
P,P' dimensional pressure and pressure 

departure from the reference state 
[N m 21 

p,p' dimensionless pressure and pressure 
departure, p' = p - p r  = P'/PU 2 

Pr Prandtl number, v/:t 
Ra Rayleigh number, gfl( Th-- T~)H~/ctv 
t time [s] 
T temperature [K] 
U, V dimensional velocity components 

[m s- ']  
u, v dimensionless velocity 

components 
X, Y Cartesian coordinates [m] 
x, y dimensionless coordinates. 

Greek symbols 
7 thermal diffusivity [m 2 s I] 
fl thermal expansion coefficient [K -t], 

- ( ( ? p / O  T)o/p 
;, inclination angle [deg] 
~; perturbation parameter 
0 dimensionless stream function 
0 dimensionless temperature function, 

(T - -  Tc) / (Th-  L )  
p density [kg m -3] 
r dimensionless time, t~/H 2 
v kinematic viscosity [m 2 s ~]. 

Subscripts 
c cold wall ; critical 
h hot wall 
i initial 
max maximum 
rain minimum 
r reference. 

heat transfer rates between measured data and the 
two-dimensional calculations. Later on, Ozoe et al. 
[13] claimed that the inconsistency was attributed to 
the three-dimensional effect in experiments. To exam- 
ine the flow structure in the inclined enclosures, Ozoe 
et al. [9, 10, 12] also conducted some flow visualization 
studies by using aluminum powder as tracer. For 
reduction of the computational efforts, Ozoe et al. [11, 
12] calculated the flow at Ra = 4000 in a 2 x 2 x 1 box 
for comparison with the observations at Ra = 12 000. 
By using the same strategy with changes in boundary 
conditions at the side boundaries, e.g. free-free or 
free-rigid, Ozoe et al. [14] also simulated the influence 
of the rigid wall on the streakline patterns in inclined 
cells. 

In the review presented above, it implies that the 
transition of the flow-modes or flow patterns may 
occur as inclination angle or Rayleigh number chan- 
ges, and the heat transfer rates may be drastically 
altered by the mode-transition. As that mentioned by 
Ozoe et al. [8], in some situations, numerical cal- 
culation can not catch the same trend of inclination 
effect on heat transfer rates as that obtained in exper- 
iments. In the present authors' viewpoint, difficulties 
in control of isothermal wall condition may be a major 
reason for the inconsistency. In fact, this class of natu- 
ral convection, especially that at zero or small incli- 
nation angles, is very sensitive to the initial and bound- 
ary conditions. In a recent numerical study on 
oscillatory natural convection, Okada and Ozoe [15] 
demonstrated the significant effects of initial condition 
on the computational results. Sparrow et al. [16] have 
investigated the effect of boundary conditions, iso- 
thermal or iso-flux, on the onset of thermal instability 

in a horizontal fluid layer. In a recent work of Kessler 
[17], thermal boundary conditions of conducting as 
well as adiabatic side walls were considered. Their 
studies disclosed that different flow patterns can be 
constructed for different thermal boundary con- 
ditions. In a most recent study, Gau and Jeng [18], 
by using an electrochemical method, conducted an 
experiment with companion numerical computations 
for transient natural convection in inclined enclosures. 
No inconsistency mentioned above was found in their 
study since they did not need to maintain uniformity 
of the wall temperatures in the experiments. It is 
believed that the imperfection of the isothermal wall 
conditions in experiments is a crucial factor and is 
worthy of investigation. 

In the present work, two-dimensional computations 
are performed for natural convection and the associ- 
ated mode transition phenomena in a two-dimen- 
sional differentially heated inclined enclosure. Navier- 
Stokes/Boussinesq equations governing the fluid flow 
and heat transfer are solved by a finite-volume 
method. The Rayleigh numbers in steady flow regime, 
1 x 103 ~< Ra ~< 2 × 104, and the angles of inclination 
of 0 ~< 7 ~< 90° are considered in the computations. To 
check the present numerical procedure, the calculated 
thermally driven flow solutions in a square cavity are 
compared with the benchmark solutions [19]. Major 
concerns are the effects of inclination on the flow- 
mode transition, which can in turn alter the heat trans- 
fer rates of the system. Enclosures of As = 1, 3 and 4 
are considered. Air of Pr = 0.71 in an enclosure of 
aspect-ratio As = 4 is chosen as the flow model to 
examine the infuences of the inclination at various 
Rayleigh numbers. Hysteresis phenomenon occurring 
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Fig. 1. Physical model of the inclined enclosure. 

in the courses of  increasing and decreasing inclination 
is also studied. Parameter  maps of  R a v s  y for As = 4 
with increasing as well as decreasing inclination are 
proposed, in which flow regimes characterized by vari- 
ous modes are designated. Influences of  the initial 
condit ion on the flow pattern formation are also 
examined for an enclosure of  As = 3. By considering 
silicon oil in a square enclosure (As = 1) studied in 
the work of  Ozoe et al. [8], effect of  the imperfect 
thermal boundary condit ion on flow solutions is inves- 
tigated to explore the possible causes for inconsistency 
of  the predictions and the experiments. 

PROBLEM STATEMENT 

Consider a two-dimensional inclined rectangular 
enclosure o f  length L and height H as shown in Fig. 
1. The two side walls are insulated, and the fluid is 
heated and cooled at the other two opposite walls, 
respectively. The fluid is assumed to be of  constant 
properties and the Boussinesq approximation is 
employed for the gravity terms. Stress-work are neg- 
lected. In the present study, H , / f l / ~  and ~t/H are used, 
respectively, as the length, time and velocity scales, 
where ~t denotes the thermal diffusivity. The dimen- 
sionless temperature function is defined as 
0 = ( T -  T~)/AT, in which AT  = Th-- T~ stands for the 
temperature difference of  the two isothermal walls and 

Tr = Tc is the fluid temperature at reference state. The 
governing equations in dimensionless form can be cast 
into the following form, 

Ou/Ox+av/Oy = 0 (1) 

Outa~ + u Oul~x + v ~ulOy 

= PrV2u-Op ' /Ox+RaPrs inyO (2) 

Or~Or + u Ov/Ox + v Ovlay 

= PrV2v-~3p' /Oy+RaPrcosyO (3) 

O0/&+uOO/ax+vOO/Oy = V20 (4) 

where p '  = p - p r  is pressure departure from the ref- 
erence pressure Pr, Ra = ~9(Th-- T¢)H3/~v is the Ray- 
leigh number, Pr = v/~ is the Prandtl  number,/~ is the 
thermal expansion coefficient and v is the kinematic 
viscosity. No-slip condit ion is imposed at four walls of  
the enclosure. Two side walls are thermally insulated, 
whereas the other two opposite walls are kept at the 
uniform temperatures Th and To, respectively. The 
boundary conditions for the system of  equations (1)-  
(4) are 

u = v = 0 at four walls 

O0/Ox=O at x = 0  and x = A s  

0 = 1  at y = 0  and 0 = 0  at y =  1 

where As is the length-to-height aspect ratio of  the 
enclosure. 

NUMERICAL PROCEDURE 

The system of  equations (1)-(4) with the boundary 
conditions stated above is solved by using finite vol- 
ume method and the S IMPLE-C algorithm [20]. Since 

Table 1. Comparison of the thermally-driven cavity flow solution 

Quantities Benchmark [19] Present Deviation 

Ra = 1 0  3 

u,,a~ 3.649(x,y) =(0.5,0.813) 3.632(x,y) =(0.5,0.818) --0.5% 
Vm,x 3.697 (x,y) = (0.181,0.5) 3.697 (x,y) = (0.178,0.5) 0.0% 
Nu 1.118 1.120 0.2% 

Numax 1.505 1.514 0.6% 
NUmi n 0.692 0.688 - 0.6% 

Ra = 104 
Umax 16.178(x,y) = (0.5,0.823) 16.194(x,y) = (0.5,0.819) 0.1% 
Vmax 19.617(x,y) = (0.119,0.5) 19.656(x,y) = (0.123,0.5) 0.2% 
NU 2.243 2.246 0.1% 

Numax 3.528 3.534 0.2% 
Numi, 0.586 0.587 0.2% 

Ra = 105 
u~a x 34.73(x,y) = (0.5,0.855) 35.43(x,y) = (0.5,0.863) 2.0% 
Vmax 68.59(x,y) = (0.066,0.5) 68.60(x,y) = (0.068,0.5) 0.0% 
Nu 4.519 4.511 --0.2% 

Numax 7.717 7.691 --0.3% 
Numi . 0.729 0.736 1.0% 
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Table 2. Grid-dependence of natural convection solutions at Ra = 104 and Pr = 0.71 in a horizontal enclosure of As = 4 

Grid NUh (% Dev.) Nuh ~- -  um~ (% Dev.) Vmax (% Dev.) 
Nu,. Nuc 

121 x31 2.50326 (--0.76) 2.1 × 10 4 27.54072 (--2.10) 30.65512 (--2.87) 
2.50347 (-0.75)  

161x4t 2.51604 ( 0.25) 1.3×10 4 27.97881 (--0.59) 31.23646 (--1.03) 
2.51617 (--0.25) 

201x51 2.52234 ( ) 9 .0x l0  ~ 28.14584 ( ) 31.56145 ( ) 
2.52243 ( ) 

the flow fields for the parameter  range considered lie 
in the steady flow regime, the time marching  nature  
of  the computa t ion  is simply a pseudo- t ransient  tech- 
nique. The value of  Az = 10 ~ is used th rough  the 
course of  the computa t ion .  A non-un i fo rm staggered 
grid with the grid lines clustered toward the walls is 
employed. As the m ax i m um  relative deviat ion of  the 
mean  Nusselt  numbers  between two successive time- 
steps is less than  the value of  10 4 or the max imum 
value of  the relative deviat ion of  the velocity u less 
than  1 0  5 , the procedure is regarded as converged. 

To check the validity of  the present numerical  pro- 
cedure, thermally driven flows in a square cavity were 
solved. The present  predict ions and the corresponding 
benchmark  solutions [19] are listed in Table 1. For  R a  

up to 105, the compar i son  shows quite good agreement  
in either max imum velocities and  mean  Nusselt  
numbers .  Also, a grid experiment  was performed 
before the course of  the computa t ions .  A typical case 
with A s  = 4, R a  = 10000, ?' = 0 '  and Pr  = 0.71 was 
calculated on the grids of  121 ×31,  161 ×41 and 
201 x 51. The test results of  mean  Nusselt  numbers ,  
and  the max imum velocities u .... and v .... are listed in 
Table 2. Based on the finest grid (201 x 51) solutions, 
the deviat ions of  the results on the relatively coarser  
grids are shown in the parentheses.  The solutions on 

a grid of  161 x41 are very close to the ones on the 
finest grid, and  the differences between the hot-wall  
and the cold-wall Nussel t  numbers ,  N u h - N U c ,  are 
small enough.  It is believed that  the grid of  161 x41 
points  is appropr ia te  in the present  computa t ions .  

Since the problem is very sensitive to the initial 
guess or initial condi t ion  (in the pseudo-unsteady 
sense) and  the hysteresis p h e n o m e n o n  is one of  the 
major  concerns  in the study, the sequence of  the 

100 . . . .  I . . . .  I . . . .  

g" (a) 
A 1500 

- - - 4 - - -  2 0 0 0  
v 3OO0 

75 , 4000 . _ -  
- - -*- - -  5 0 0 0  

-- 10000 
• 20000 

4 . 0  . ,. , . . . .  , . . . .  6 0  . . . .  , . . . .  , . . . .  

R. (b) R. 
1 5 0 0  

3 , 0 '  ~ ~ 1 0 0 0 ~  ~ - - ' ÷ - - "  5 0 0 0  
+ 1 0 0 0 0  

• 2 0 0 0 0  

1 .  - 

0 30 60 90 0 30 8O 90 

7(deg) 7(deg) 
Fig. 2. Average Nusselt numbers at various y and Ra (;'- Fig. 3. Maximum velocities at various ,/and Ra ('/-increas- 

increasing), ing), (a) u ....  (b) Vm~x. 
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numerical solution should be specified clearly. In com- 
putations with y increasing from 0 ° to 90 °, flow and 
temperature fields at a fixed value of  Ra in horizontal 
enclosure (y = 0 °) are first solved. Fo r  y = 0 °, the 
initial guess of  the velocity field is null and the initial 
temperature field is 0i = 0. The zero-inclination solu- 
tion is employed as the initial condit ion for solution 
of  the subsequent case of  inclination, say 2, = 5 °. The 
latter solution is then used to initiate the computat ion 
of  the flow solution at, say, y = 10% and so on. As 
the y-range in which mode-transit ion occurs, say ), 
between 25 ° and 30 °, a smaller increment of  Ay = 1 ° 
is employed to locate mode-transit ion angle within 1 ° 
accuracy. After the solutions at y = 90 ° are obtained, 
it is used as the initial guess for solution of  a lower 
inclination. Then the similar procedure proceeds con- 
tinuously back to y = 0 °. 

The computat ions in the present work were per- 
formed on an HP-750 workstation. Only one iteration 
is performed in a time-step. In general, the number of  
the pseudo-time steps needed for convergent or steady- 

state solution is of  the order of  104 . It took about  
0.25 s for a single time-step. For  Rayleigh numbers 
near the critical point, e.g. Ra = 1500 and 2000, the 
convergence rate is very slow and the computat ional  
time is almost one order longer than a general case. 

RESULTS AND DISCUSSION 

Heat transfer rates in the course of  7 increasing 
Figure 2 displays the mean heat transfer rates, Nu, 

at various Rayleigh numbers and inclination angles. 
Since, for zero-inclination, the critical Rayleigh num- 
ber is about  1800, Nu is still kept as 1.0 for Ra = 1500. 
As the enclosure is tilted, the upward buoyant  flow 
along the upslope wall is built. The heat convection 
contributes immediately, and the Nu departs from 
the conduction state (Nu = 1). Fo r  a higher Rayleigh 
number, Ra = 2000, which lies at a supercritical state, 
Nu for y = 0 ° is around 1.1. As Ra further increases, 
e.g. Ra = 3000, 4000 or  5000, a noticeable drop on 
the Nu-curve appears. The change in heat transfer rate 

(a) T=O ° 

(b) y = l  o III 
I II 

I I 

,I 

,I 
(c) T=69 ° 

(d) ~'=70 ° 

(e) T--90 ° 

Fig. 4. Streamlines (left column) and isotherms (right column) for Ra = 1500 and y increasing. (a) ~ = 0 °, 
conductive solution; (b) ~, = 1% the extreme values of ~, are ($mm, Sin.x) ----(0, 0.125), and the streamlines 
drawn are $ = 0 to 0.12 with A~, = 0.02, or in brief, ~k = 0(0.02)0.12 ; (c) ? = 69 °, ($m~n, ~ )  = (0, 3.624) 
and ~ = 0(0.5)3.5; (d) y = 70 °, (¢~,$=ax) =(0,3.641) and ¢ = 0(0.5)3.5; (e) y = 90 °, ($min,¢~x) = 

(0, 3.756) and ~ = 0(0.5)3.5. In streamline patterns, solid lines: counter-clockwise. 



2874 C.Y. SOONG et al. 

(a) 7 = 0  ° 

(b) 7 = 2  ° 

(c) 7 = 1 5  ° 

(d) 7 = 6 2  ° 

(e) 7--90 ° 

Fig. 5. Streamlines and isotherms for Ra = 2000 and ,/increasing. (a) ?, = 0 ,  (0m,, 0,,~0 = ( - 1.296, 1.296) 
and 0 = - 1 . 2 ( 0 . 4 ) 1 . 2 ;  (b) ?,=2~, (0mm,~0m~O = (--1.122,1.413) and 0 = - 0 . 8 ( 0 . 4 ) 1 . 2 ;  (c) 7 =  15':, 
(0m,~,0,,,~) =(0,2.498) and ~k = 0(0.3)2.4; (d) 7 =  62 • (0 ..... 0m~) =(0,4.570) and 0 = 0(0.5)4.5; 
(e) ?, = 9 0  °, (0mi,, 0m~0 = (0, 4.854) and 0 = 0(0.6)4.8. In streamline patterns, solid lines: counter-clock- 

wise ; dashed lines : clockwise. 

implies a t ransi t ion of  the flow pat tern.  The t ransi t ion 
for changing 7 can be delayed by increasing Ra. For  
the cases of  Ra = 10 000 and  20 000, a relatively small 
indenta t ion  emerges before the occurrence of the 
catastrophe.  It is believed tha t  ano ther  mode tran-  
sition occurs there. 

In Fig. 3, the max imum velocities u ..... and t' .... in 
the flow fields corresponding to the cases in Fig. 2 are 
plotted. Incl inat ion results upslope (downslope) flow 
along the hot  (cold) isothermal  walls ; therefore,  u ..... 
increases with 7 as shown in Fig. 3(a). It is most  
interesting that  the values of  v .... in Fig. 3(b) are of  
the similar t rend as the mean  Nussel t  numbers  shown 
in Fig. 2. Physically, heat  is supplied by the hot  wall 
and, except the conduct ion,  it is convected towards  
the cold wall by the t ransverse movement  of  the fluid 
particles. The larger the t ransverse velocity, v, the 
higher  the heat  t ransfer  rate, Nu. Figure 3(b) dem- 
onstrates  this close relevance of  the t ransverse velocity 
v to the heat  t ransfer  mechanism.  In addit ion,  clearer 

informat ion  abou t  the flow-mode t ransi t ion can be 
obta ined from the observat ions  on  the Vm~x curves. 

kTow-mode transition~or 7 increasin9 
The streamlines and  isotherms at Ra = 1500, 2000, 

5000 and 20 000 are shown in Figs. 4-7, respectively. 
In Fig. 4 for Ra = 1500, the calculated values o f u  and  
v are of  the order  of  10 H 10-10. According to our  
experience in the computa t ion ,  the orders of  u and  v 
drop  cont inuously  a l though the decaying rate is slow. 
The fluid in this subcritical (Ra <Rac)  state is still 
regarded as stat ionary.  As the enclosure is inclined, 
7 = 1 ,  the shear flow along the two longi tudinal  walls 
results a large circulat ion in which there are two weak 
sub-cells ro ta t ing in the same sense as the pr imary  cell. 
This two-in-one cellular s t ructure  disappears  at  an 
incl inat ion angle between 6 9  and  70 ° due to s t ronger  
upslope/downslope flows a long the x-direction. For  
7 ~> 70", the flow field is of  unicell mode. The iso- 
therms in Fig. 4(b) il lustrate a gradual  change from a 
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(a))'=00 

| 1 | 1  i ~ql I 1 | |  i I  I l l  I | I I [ | [ (  )fill,,,, ~;  , , , , l l l f fC~) ] ] l l . . ,  . , : .  I 
\ , , , . : . -o,  ,, • , . ' - -  . ; , ,  

( b ) ) ' = 1 2  ° 

. . . .  <5:: 

( c ) ) ' = 1 3  ° 

( d ) ) ' = 3 3  ° 

( e ) ) ' - - 9 0  ° 

Fig. 6. Streamlines and isotherms for Ra = 5000 and ~ increasing. (a) ~ = 0 °, (~k~i., ~/max) = ( - -  5.253, 5.253) 
and ~b = -5.0(1.0)5.0; (b) 7 = 12 °, (@mln,~bmax) =(--4.324,6.081) and ~ = --4.0(1.0)6.0; (c) 7 = 13°, 
(~bm~.,ffmax)=(-4.668,6.487) and ~b=-4.0(1.0)6.0;  (d) 7 = 3 3  °, (~m~.,¢max)=(0,7.783) and 

= 0(1.0)7.0; (e) 7 = 90 °, (~bm,., ~k~a~) = (0, 9.903) and ¢~ = 0(1.0)9.0. 

strat if ication state to a skew-symmetric  dis tor t ion due 
to the cellular mot ion .  Figure 5 shows the case of  
Ra = 2000, in which the flow appears  as a four-cell 
s t ructure  at  7 = 0°- In this slightly super-crit ical flow, 
the cellular mot ion  is weak, the r ight-most  cell a t  the 
upper  end of  the incl inat ion enclosure can not  resist 
the upward  flow coming f rom the hot  wall and,  then,  
it is smeared out  at  the incl inat ion angle even as low 
as 7 = 2 °. Hereinafter ,  the flow structure  turns  to the 
three-cell one and  the isotherms show the a t t endan t  
change  in t empera ture  field. As the incl inat ion angle 
increases, the flow pa t te rn  changes  to a two-in-one 
cell mode  at  ~ between 14 ° and  15 °, and  the lat ter  
s t ructure  persists unti l  ~ = 61 °. At  ~ = 62 °, the flow 
field turns  to one o f  unicell mode.  Fo r  a higher  Ray- 
leigh number ,  Ra = 5000 in Fig. 6, the cellular mo t ion  
becomes s t ronger  due to larger buoyancy  and  the four- 
cell s t ructure  can  ma in t a in  for incl inat ion angle up  to 

= 12 °. The flow pa t te rn  turns  to a three-cell s t ructure  
at  7 = 13 ° and  retains the same pa t te rn  up  to 7 = 31 °. 
Subsequently,  the unicell mode  prevails in the range 

of  33 ° ~< ), ~< 90 °. The two-in-one cellular s tructure 
appears  only in a small  region of  31 ° < ~, < 33 °. The 
isotherms change f rom a highly-dis tor ted state for 
multi-cell s t ructures at  low-v to a simple pa t te rn  for 
unicell mode  at  V/> 33 °. As the Rayleigh n u m b e r  fur- 
ther  increases, the occurrence of  the mode- t rans i t ion  
f rom four-cell to three-cell can be pos tponed  to a 
higher  value of),, e.g. ~ = 19 ° for Ra = 20000 in Fig. 
7. Also, in the h igh-Ra case, the complex flow turns  
to the simple unicell s t ructure at  a higher  inclination.  
Similar bu t  highly dis tor ted i sotherms as tha t  for 
Ra = 5000 are presented in Fig. 7(b). It is no ted  tha t  
a small  corner  cell appears  in the calculated four-cell 
s t ructure  before the t rans i t ion to three-cell. The corner  
cell is essentially a characteris t ic  p h e n o m e n o n  for high 
Ra (or  high driving force). 

Hysteresis phenomenon 
Due to highly nonl inear  na ture  of  the system, dual  

or mult iple solut ions may  exist. To investigate the 
hysteresis p h e n o m e n o n  in the problem,  the course of  



2876 C.Y. SOONG et al. 

(a) ~'=0 ° 

(b) ~'=18 ° 

(c) "/=19 ° 

 Y¢I 
(d) T--43 ° 

I i i i i i i i 

(e) ~'=90 ° 

I J i i i i 

Fig. 7. Streamlines and isotherms for Ra=20000 and 7 increasing. (a) 7 = 0  ~, (~Omm, Om,x)= 
(--12.939,12.939) and ~ =  12.5(2.5)12.5; (b) 7 = 1 8  ', (~pm,,,~b,,~x)=(--10.303,14.443) and ~ =  
-10(2.5)12.5: (c) ~'= 19 ~, (~bm~,,~m~x)= ( 11.393,15.481) and ~9= 10(2.5)15; (d) y = 4 3 ,  (~m~n, 

~bm,,~) =(0.20.890) and ~, = 0(2.5)20.0: (e) .' = 90 . (~,,,,,, ~bmJ =(0,20.161) and qJ = 0(2.5)20.0. 

the computations are reversed, i.e. low-;' solutions are 
found by taking the convergent solution at a slightly 
higher value of  ~,, as the initial guess. It is just equi- 
valent to reducing the inclination in the experiment. 
Figure 8 shows the comparisons of  the calculated 
mean Nusselt numbers for increasing and decreasing 
7. At Ra < 2000, no significant difference between the 
results obtained in the two courses of  changing 7. At 
Ra = 2000 in Fig. 8(a), two solutions deviate in a 
small region of  inclination and at Ra = 3000 it is more 
noticeable in the range of  7 < 10". For  Ra = 4000 
and 5000, an additional hysteresis region near 7 = 30': 
emerges and the two dual-solution regions enlarge 
with increasing Ra. As Ra further increases to 
Ra = 10000 and 20000, the hysteresis prevails in a 
considerable range of  lower inclination. The bifur- 
cation point moves toward high 7 as Ra increases. It 
implies the complexities of  the flow field at high heat- 
ing rates. As an illustrative example of  the hysteresis 
phenomena, the mode transition of  the flow and tem- 
perature fields at Ra = 5000 and with 7-decreasing 

are shown in Fig. 9 and compared with those for 7 
increasing in Fig. 6. Comparison shows that the flow- 
mode transition can be significantly influenced by the 
course of  changing inclination 7. 

Parameter maps 

Parameter maps are very useful in summarizing the 
flow patterns for various combinations of  the par- 
ameters involved. In a small As enclosure the flow 
structure is simpler, e.g. unicell pattern prevails in 
steady flow regime for As = 1. Although the com- 
plexity of  the flow structure in large As can be 
expected, the construction of  the parameter maps is 
very expensive in a computational  viewpoint. In the 
present work, by considering both the interest in the 
flow complexity and the computational  efforts, only 
the enclosure of  As = 4 is considered as a typical 
example to illustrate the diversity of  the flow structure 
and the difference in parameter maps for the 7-increas- 
ing and ),-decreasing courses. 

Based on the computational  results, parameter 
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Fig. 8. Hysteresis phenomena denoted by average Nusselt numbers. (a) Ra = 2000 ; (b) Ra = 3000 ; (c) 
Ra = 4000 ; (d) Ra = 5000 ; (e) Ra = 10 000 and (f) Ra = 20 000. 

maps of R a v s  7 for y-increasing and y-decreasing, 
respectively, are constructed as Figs. 10(a) and (b), 
in which the flow regimes characterized by four-cell, 
three-cell, two-in-one cell, and unicell are designated. 
It is revealed that, in Fig. 10(a) for 7-increasing, the 
multi-cell structures exist in low-y cases, in which the 
thermal instability mechanism dominates. With in- 
creasing Rayleigh number,  the flow regimes of multi- 
cell structures become large. It  is also attributed to 
the dominant  role of the convection cells, while for 
the high inclination, the unicell mode is prevailing due 
to the strong upslope flow along the hotter isothermal 
wall caused by large buoyancy force component  in 
that direction. The strong longitudinal flow destroys 
the multi-cell (four- and three-cell) structures. 

In Fig. 10(b) for the case of decreasing 7, the flow- 
mode transition is distinct from that for increasing 7- 
Since the flow fields at large inclination angles are of 
simpler structure of  unicell, the flow tends to maintain  
the unicell structure as 7 decreases from 90 °. There- 

fore, a larger unicell region is shown in the parameter 
map. Similarly, the simple structure of two-in-one cell 
can exist at the lower y, especially in the cases of high 
Ra. Relatively, the complex flows of the three-cell 
structure are restricted in a smaller regime, and the 
four-cell mode even disappears in this 7 decreasing 
course. For  Ra lies up to the value of 20 000, three- 
cell vanishes and two-cell structure emerges at low 
inclination angles, i.e. 7 ~< 4°. 

Effects o f  initial conditions 
Effects of the initial condit ion in inclined eases are 

reflected in the hysteresis phenomena and dual solu- 
tions in some y-ranges described in the last sections. 
For  the horizontal enclosures, the solution sensitivity 
to the initial condit ion of the temperature field is 
examined by using an enclosure of As = 3. Three 
initial conditions, 0i - 0, 0.5 and 1.0, are considered. 
These three values, respectively, correspond to the 
fluid being initially at the cold-wall temperature, To 
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(b) T = 3 2  ° 

(c) T=31 o 

(d) T=21 ° 
i 

(e) T=O ° 

Fig. 9. Streamlines and isotherms for Ra = 5000 and 7 decreasing. (a) 7 = 90', (0n, m, Om~x) = (0, 9.903) and 
0 = 0(1.0)9.0; (b) ?' = 32', (0m~n, Om~0 =(0,7.646) and 0 = 0(1.0)7.0; (c) 1' = 31), ( 0 ~ , , ~ )  =(0,7.505) 
and ~=0(1.0)7.0;  (d) 7 = 2 1 ,  (~,,,~,,,~m~,0=(-3.789.6.925) and ~ = - 3 . 0 ( 1 . 0 ) 6 . 0 ;  ( e ) ) , = 0 ,  

(O,oio, Ore,,) = (5.745.5.538)  and 0 = - 5.0(1.0)5.0. 

the average of  the cold- and hot-wall temperatures.  
(T~+Th)/2 and the hot-wall temperature,  T~. For  
0, = 0, the fluid near  the hot bo t tom wall is heated 
and tends to rise up. Since the fluids adjacent  to the 
side walls are retarded by the s t rong viscous effect, the 
ascending mot ion  is relatively s t ronger  in the central  
region (x near 1.5). Finally, as shown in Fig. 11 (a), a 
pair of  counter - ro ta t ing  cells with the central  fluid 
arising is formed, while in the cases of  0~ = 1, the 
si tuat ion is reversed. The fluid lies initially at the same 
tempera ture  as the hot-wall  and  is suddenly cooled by 
the top cold wall. The cooled fluid near  the top wall 
tends to descend and, for relatively weaker viscous 
effect, the fluid in central  region moves downward.  
The resul tant  vortex-pair  rotates in opposed sense as 
tha t  in the case of  0. = 0, see Fig. l l (c ) .  In case of  
0~ = 0.5, which is an  equil ibrium state in a conduct ive 
sense for the fluid at .v = 0.5. The fluid at  the center 
of  the enclosure, i.e. (x, y) = (1.5, 0.5), tends to remain 
s ta t ionary and becomes a vortex center for the sym- 
metric nature  of  the thermal  state. In this situation, a 
flow pat tern  of  odd number  of  cells, e.g. three cells in 
Fig. 11 (b), is more  likely constructed.  

For  odd number  of  cells in horizontal  enclosures 
with perfect boundary  condit ions,  there are two poss- 
ible flow patterns,  e.g. the three-cell s tructures of 
( + ,  - ,  + ) and ( - ,  + ,  - ) .  The resul tant  flow pat tern  
in this case is strongly influenced by the disturbances,  
either numerical  (in computa t ions)  or physical (in 
experiments),  emerging in the flow field. Therefore  
the round-off  error  dis t r ibut ion in the field, which 
depends on the numerical  scheme (no mat te r  how 
stable) and  the calculat ion procedure  (e.g. direct ion 
of  line-by-line sweep) used in the computa t ions ,  may 
result a preferred one of  the two possible flow patterns.  
However,  it is no tewor thy  that  these two flows, 
( + ,  - ,  + )  or ( - ,  + ,  - ) ,  are of  the same values of 
the mean  Nusselt  n u m b e r  in the hor izontal  enclosures. 

Effects o[" imperfect thermal boundary conditions 
Figure 12(a) shows the 7-dependence of  the heat  

t ransfer  rates for the cases of  Ra = 3800 and 
Pr = 5580 in a square enclosure. The present  pre- 
dictions are compared  with the measured data  (solid 
d iamond)  and  the numerical  results (solid line) bo th  
by Ozoe et al. [8]. It is noted  that ,  in Fig. 12(a), as the 
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Fig. 10. Parameter maps for natural convection in two- 
dimensional inclined enclosure. (a) y-increasing; (b) y- 

decreasing. 

inclination increases from ~ = 0 °, the measured Nu 
first drops and then turns to rise at about  ~ = 5 °. This 
trend was missed in the two-dimensional numerical 
predictions of Ozoe et al. in which Nu is monotonic  
in the low-~ regime. For  a higher Rayleigh number,  
in Fig. 12(b), the same behavior is displayed. In a 
later report by Ozoe et al. [13] they claimed that it 
is attributed to the three-dimensional effect. Herein, 
another effect arising from the imperfection of the 
thermal boundary  conditions is investigated. 

In the present study, the mismatch is presumed to 
be caused by the imperfection of the thermal boundary  
conditions in the experiments. To demonstrate this 
theory, wall temperature on the upper boundary,  
O(x, 1) = 0, is replaced by O(x, 1) = e (1 -2x /As) ,  
where e denotes a perturbation parameter for the 
imperfection of wall-temperature uniformity. The case 
ofe = 0 corresponds to that of  perfect isothermal-wall 
condition. By considering e = 0.0005, which results a 
non-uniformity of +0 .05% in the upper wall tem- 
perature, the predicted values of Nu, denoted by the 
solid triangles in Fig. 12(a), for ~ ~< 5 ° behave totally 

different from the corresponding cases of e = 0 or 
perfect condition. However, the solutions return back 
to the curve for e = 0 at ~ = 6 °. The predicted change- 
over occurs at the inclination between 5 and 6 °, which 
agrees well with the experimental data although the 
peak values are rather different. The computed Nu- 
peak is sharper than the measured data. It is believed 
that the sharpness stems from the two-dimensionality 
of the computat ional  model. Another  value, 
e = 0.005, is also used in the computation.  There is no 
significant difference between the Nusselt numbers for 
e = 0.005 and e = 0.0005. It implies that the small 
disturbances result in insignificant change in physical 
quanti ty such as heat transfer rate as long as e # 0. 
But even a very small e, e.g. e = 0.0005, can produce 
remarkable deviation from the case of e = 0. Obvi- 
ously, the imperfection of the thermal boundary  con- 
dition plays essentially a triggering role for a mode- 
transition. 

For the case of Ra = 4950 and Pr = 5220 shown in 
Fig. 12(b), Ozoe et al. measured heat transfer rates 
with y-increasing (solid rhombuses) as well as 7- 
decreasing (open rhombuses). In the y-increasing 
course, the present prediction with the disturbed ther- 
mal boundary  condit ion (e = 0.0005), can also catch 
the bifurcation trend although the predicted change- 
over angle slightly deviates from the experimental 
result. For  ?-decreasing, the present results with either 
the perfect and disturbed conditions are close to the 
predictions of Ozoe et al. [8]. 

To manifest the triggering role of the imperfection 
of the wall condition, the streamlines and isotherms 
for the horizontal enclosure with e = 0, -0 .0005  and 
0.0005 are shown in Figs. 13(a), (b) and (c), respec- 
tively. In the perfect case of e = 0, the cell rotates in 
counter-clockwise sense. In the case of e = -0 .0005  
in Fig. 13(b), the right-half of  the cold-wall lies at a 
slightly higher temperature than the left-half, which 
also results in a cellular motion of the counter-clock- 
wise rotation as that for e = 0. However, the imper- 
fection of the wall temperature with e = 0.0005 alters 
the rotating sense of the cell due to different per- 
turbat ion in cold-wall temperature. For  e = 0 and 

- 0.0005, the inclination of the enclosure can enhance 
the counter-clockwise rotation as well as the heat 
transfer rates. For  the inclined case of e = 0.0005, 
however, the upslope shear flow due to buoyancy pro- 
duces a counter effect on the clockwise rotation of the 
cell, and the heat transfer performance degraded. At 

= 6 °, the effect is large enough to reverse the 
rotational sense of the cellular motion,  the flow pat- 
tern bifurcates and turns back to the upper branch of 
the solutions, see Fig. 14. 

CONCLUDING REMARKS 

A numerical investigation for a two-dimensional 
differentially heated enclosure has been performed. 
Based on the computat ional  results, the following 
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Fig. 11. Effects of initial temperature field on flow pattern for Ra = 3000 and Pr = 0.71 in a horizontal 
enclosure of A s = 3 .  (a) 0 ,=0 ,  (~m,o,~,n,0 = ( -- 3.007. 3.007) and ~ =  2.5(0.5)2.5; (b) 0~=0.5, 
(~m~°,~'m,0 =(--2.786.3.142) and ~, = 2.5(0.5)3.0; (c) 0~= 1.0, (~Pm~,,,'Pm,0 =(--3.007,3.007) and 

~, = -- 2.5(0.5)2.5. In streamline patterns, solid lines : counter-clockwise ; dashed lines : clockwise. 

conclusions can be drawn : 
(1) The enhancement  of  heat  t ransfer  rates in the 

cases of  high Ra and 7 is closely related to the mech- 
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Fig. 12. Comparisons of the present predictions and the 
measured data for natural convection in a square enclosure 
at (a) R a = 3 8 0 0  and P r = 5 5 8 0 ;  (b) R a = 4 9 5 0  and 
Pr = 5220. The solid and open notations are results for ;:- 

increasing and ?-decreasing, respectively. 

anism of  var ia t ion in transverse velocity (v). In the 
flow with a larger transverse velocity, the na tura l  con- 
vection heat  t ransfer  is strong. 

(2) The possible flow modes  (or flow pat terns)  in 
the enclosure of  As  = 4 are four-cell, three-cell, two- 
in-one cell and  unicell. For  a fixed value of  Ra,  the 
t ransi t ion of  the flow mode  strongly depends on the 
compet i t ion  of  the buoyan t  flow and  the shear flow 
(along the heat ing and  cooling walls) due to incli- 
nation.  For  7 increasing, the multi-cell s tructures can 
exist at  low incl inat ion angles. The flow regimes of  
multi-cell s tructures in the map  extend with increasing 
Ra. Whereas  the unicell mode  prevails in high incli- 
na t ion since the s t rong longi tudinal  (x-direction) flow 
destroys the multi-cell ( four -  and  three-cell) struc- 
tures. 

(3) For  As  = 4 in the present work, hysteresis 
p h e n o m e n o n  appears  for Ra >~ 2000. In the course of  
7 decreasing from 90 :~ to 0 °, the flow m a p  is different 
f rom that  for ? increasing. The computa t iona l  results 
in the course of  ?-decreasing reveal tha t  the simple 
flow pat te rns  of  unicell and  two-in-one cell prevail  in 
most  parts  of  the map. The more complex flow of  
three-cell is restricted in a small region of  low- 7. Fur-  
thermore,  the four-cell s t ructure disappears.  

(4) Flow pat tern  fo rmat ion  is very sensitive to the 
initial state of  the flow field. In inclined enclosures, 
the effects are reflected on  the hysteresis p h e n o m e n a  
and  dual  solutions in some regions of  incl inat ion 
angle. For  hor izontal  cases, the resul tant  flow pa t te rn  
may also strongly depend on the initial condi t ion  of  
fluid temperature.  Similarly, to generate a flow pa t te rn  
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Fig. 13. Streamlines and isotherms for As = 1, Ra = 3800, Fig. 14. Change-over process for As = 1, Ra = 3800, 
Pr = 5580 and Y = 0°- (a) e = 0, (~bmi,, ~kmax) = (0, 2.734) and Pr = 5580, e = 0.0005 and (a) Y = 0°, (~kmi,, ~km~x) = 
~b = 0(0.5)2.5; (b) e = -0.0005, (~km~,, ~'max) =(0,2.736) and (--2.736,0) and ~, = -2.5(0.5)0;  (b)), = 5 °, (I//min, @max ) = 

~b = 0(0.5)2.5 ; (c) e = 0.0005, (~k~m, Cm~x) = ( -2 .736,  0) and ( -  1.794, 0) and ~k = 0(0.5) 1.5 and (c) y = 6 °, (~km~., ~kr, ax) = 
= --2.5(0.5)0. (0, 3.216) and ~k = 0(0.5)3.0. 

u n d e r  a specific c o n d i t i o n  in l abo ra to ry ,  initial  s ta te  
se t t ing is cri t ical  to  the  resu l tan t  f low s t ructure .  

(5) N o n - u n i f o r m i t y  o f  the  wall  t e m p e r a t u r e  m a y  
resul t  in a d i f ferent  f low m o d e  f r o m  tha t  o f  pe r fec t ion  
cond i t ions .  T h e  p re sen t  numer i ca l  s tudy  has  d e m -  
o n s t r a t e d  tha t  the  impe r f ec t i on  o f  the  t he rma l  b o u n d -  
ary  c o n d i t i o n  can  be a t r igger  fo r  the  mode - t r ans i t i on .  
F u r t h e r m o r e ,  in a dd i t i on  to  the  th ree -d imens iona l i ty ,  
the  imper fec t ion  in t he rma l  b o u n d a r y  cond i t ion ,  
wh ich  is qu i te  c o m m o n  in expe r imen t s ,  is one  o f  the  
poss ib le  causes  for  the  m i s m a t c h  o f  the  numer ica l  
p red ic t ion  a n d  the  m e a s u r e d  da ta .  
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